Using a microfluidic device for 1 μl DNA microarray hybridization in 500 s

نویسندگان

  • Cheng-Wey Wei
  • Ji-Yen Cheng
  • Chih-Ting Huang
  • Meng-Hua Yen
  • Tai-Horng Young
چکیده

This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 microl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO2 laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA-DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 mul target was used to hybridize with an array that can hold 5000 probes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastic polymers for efficient DNA microarray hybridization : 1 Application to microbiological diagnostics

2 Fabrication of microarray devices using traditional glass slides is not easily 3 adaptable to integration into microfluidic systems. There is thus a need for the 4 development of polymeric materials showing a high hybridization signal to 5 background ratio enabling sensitive detection of microbial pathogens. We have 6 developed such plastic supports suitable for highly sensitive DNA microarra...

متن کامل

Microfluidic nanoplasmonic-enabled device for multiplex DNA detection.

We describe a rapid, quantitative, multiplex, self-labelled, and real-time DNA biosensor employing Ag nanoparticle-bound DNA hairpin probes immobilized in a microfluidic channel. Capture of complementary target DNAs by the microarrayed DNA hairpin probes results in a positive fluorescence signal via a conformational change of the probe molecules, signalling the presence of target DNAs. The devi...

متن کامل

Biostickers: Patterned Microfluidic Stickers for Rapid Integration with Microarrays

We present a one-step, reversible, and biocompatible bonding method of a stiff patterned microfluidic "Biosticker", based on off-stoichiometry thiol-ene (OSTE) polymers [1], to state-of-the-art spotted microarray surfaces. The method aims at improving and simplifying the batch back-end processing of microarrays. We illustrate its ease of use in two applications: a high sensitivity flow-through ...

متن کامل

Fully integrated miniature device for automated gene expression DNA microarray processing.

A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent ...

متن کامل

Comparative modeling and analysis of microfluidic and conventional DNA microarrays.

A theoretical analysis was developed to predict molecular hybridization rates for microarrays where samples flow through microfluidic channels and for conventional microarrays where samples remain stationary during hybridization. The theory was validated by using a multiplexed microfluidic microarray where eight samples were hybridized simultaneously against eight probes using 60-mer DNA strand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005